Gator



VC TimeGen Clock (TGC)
The VC TimeGen Clock has the left cell "blue" out being an asymmetrical tri wave & "red" out being a 50% duty cycle square wave output which stays constant through the manual "freq' POT range in combination with the "both" position selected w/ external CV -- BUT with the ability to modify the duty cycle (pulsewidth) of the output(s) using external CV source from either the front or the back of the pulse by selecting "rise" or "fall" on the CV source select switch. That way you can create syncopation in the rhythm patches & pulse width mod in the audio range use. The right cell has DTG functionality, just like the CV TimeGen OSC.

÷ N Comparator (NCOM)
The ÷ N COMPARATOR (NCOM) consists of two sections: a comparator and a voltage-controlled pulse divider. The divider section outputs a pulse once every “N” comparator pulse, where “N” is a number from 1 to 31, settable with a control voltage at the divider's VC input (or manually via the divider's control knob). Additionally, the Divider outputs a staircase wave with “N” steps. This will produce whole-tone steps when plugged into the 1 V/Oct input of a VCO.

This module has two distinct areas of use (in addition to the normal functions of the comparator):
  • For audio frequencies, the divider can be set to output sub-divided frequencies with digital precision. Output frequency depends on “N”. If “N”=2,3,4, etc., the output frequencies will be an octave, an octave and a fifth, or two octaves below the input, respectively. Because “N” is voltage controllable, arpeggios and various melodies can easily be programmed. The nature of this type of division (integer division) results in frequencies that fall along the sub-harmonic series, a series that has great tonal charm. 
  • For sub-audio frequencies, the divider acts like a counter, outputting a pulse only after “N” number of input pulses. Input pulses can be fairly random, or regular. This capability is especially powerful for determining tempos and rhythmic patterns when using several sequencers (especially if the “N” VC input is taken from one of a sequencer's rows of controls). In a more random situation, using a microphone preamp/detector as input, the divider might be set to count how many times a sound of a certain loudness will have occurred, and be set to trigger an event upon reaching the count. Since the count can be made variable (from 1 to 31), fairly complex and subtle interactions can be generated. 

Pulse Divider (PDIV)
From Carbon111's Serge Modular Index:
"I think this is one of Rex's creations. Looks simple enough: feed a pulse train in, get multiple simultaneous divided outputs. Other pulse dividers I've seen from other manufacturers provide outputs that are powers of two (2,4,8,16...) but don't provide 5,6, or 7 or any odd-numbered divisors. Providing the odd divisors aids greatly in creating polyrhythms."

Boolean Logic (BLOG)
From Carbon111's Serge Modular Index:
"This is the best way to combine triggers together in various ways. Of course, can be used for making audio too. One guy says he uses it as a blinky-lite indicator to show the status of signals in his system. This is one of Rex's ideas, offering two inverters, and OR, AND, and XOR gates."

Cross-Fader (XFAD)
The CROSS-FADER (XFAD) is an equal-power cross fade unit. The module has two signal inputs. As one signal increases in level at the output under manual or voltage control, the other signal decreases in level at the output. This effect is used to accurately fade one sound in while fading another out. Cross-fading with voltage control permits a smooth transformation between two different timbres. If a sound and its reverberated image (available with the Wilson Analog Delay) are sent through the cross-fader, the reverb mix can be voltage controlled. This effect can be used to modify the spatial characteristics of a sound event, from immediate presence to distant ambience. In addition to the cross-fade function, a VCA controls the output amplitude.

No comments:

Post a Comment